Precision control of flow rate in microfluidic channels using photoresponsive soft polymer actuators.

نویسندگان

  • Colm Delaney
  • Peter McCluskey
  • Simon Coleman
  • Jeffrey Whyte
  • Nigel Kent
  • Dermot Diamond
چکیده

A novel approach that allows control of flow in microfluidic channels with unsurpassed performance using light is described. Valve structures have been created using photoresponsive hydrogels based on spiropyran-functionalised pNIPAAm hydrogels photopolymerised around pillar structures within the channels. Valve actuation is controlled from outside the fluidic system using externally located LEDs. Highly precise and accurate flow rates can be selected by passing real-time flow rate measurements into a PID algorithm. The optimised algorithm also minimises overshoot of the selected flow rate, eliminates flow rate drift, and improves the system response time. In addition to the dramatic improvements in flow rate control, the set up enables the polymer actuation behaviour to be rapidly characterised. The power supply to the LED also provides a useful system diagnostic for monitoring the performance of the valve over time. For example, degradation in the valve actuation due to photodegradation will manifest as an increasing power requirement over time, enabling predictive failure thresholds to be established for particular actuator designs and polymer compositions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Microfluidic systems for single DNA dynamics.

Recent advances in microfluidics have enabled the molecular-level study of polymer dynamics using single DNA chains. Single polymer studies based on fluorescence microscopy allow for the direct observation of non-equilibrium polymer conformations and dynamical phenomena such as diffusion, relaxation, and molecular stretching pathways in flow. Microfluidic devices have enabled the precise contro...

متن کامل

Ionic electroactive polymer actuators as active microfluidic mixers

On-chip sample processing is integral to the continued development of lab-on-a-chip devices for various applications. An active microfluidic mixer prototype is proposed using ionic electroactive polymer actuators (IEAPAs) as artificial cilia. A proof-of-concept experiment was performed in which the actuators were shown to produce localized flow pattern disruptions in the laminar flow regime. Su...

متن کامل

Imaging based optofluidic air flow meter with polymer interferometers defined by soft lithography.

We present an optofluidic chip with integrated polymer interferometers for measuring both the microfluidic air pressure and flow rate. The chip contains a microfluidic circuit and optical cavities on a polymer which was defined by soft lithography. The pressure can be read out by imaging the interference patterns of the cavities. The air flow rate was then calculated from the differential press...

متن کامل

Valve-based flow focusing for drop formation

Picoliter drops made in microfluidic devices can serve as individual compartments for chemical reactions and can be processed at kilohertz rates with high precision. This combination of speed and containment is very useful for highthroughput screening, for discovering novel drugs, for sorting analytes and worms, and for directed evolution of enzymes and cells. For applications in microfluidics,...

متن کامل

Modeling and Estimating the Dimensions of Stable Alluvial Channels using Soft Calculations

In this research, soft computational models including multiple adaptive spline regression model (MARS) and data group classification model (GMDH) were used to estimate the geometric dimensions of stable alluvial channels including channel surface width (w), flow depth (h), and longitudinal slope (S) and the results of the developed models were compared with the multilayer neural network (MLP) m...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Lab on a chip

دوره 17 11  شماره 

صفحات  -

تاریخ انتشار 2017